
Comparison of OpenMP and Classical Multi-Threading Parallelization for
Regular and Irregular Algorithms

Eugen Dedu, dedu@ese-metz.fr
Stéphane Vialle, vialle@ese-metz.fr

Supélec, Metz campus
2 rue Edouard Belin
57070 Metz, France

Claude Timsit, Claude.Timsit@supelec.fr
Supélec, Gif-sur-Yvette campus

Plateau de Moulon
91192 Gif-sur-Yvette, France

Abstract

The new emerging Distributed Shared Memory architec-
ture promises to be more scalable than Symmetric Multipro-
cessor architecture, and leads to a regain of interest for par-
allel shared-memory programming paradigms. This paper
compares two such important paradigms: classical multi-
threading and multi-threading based on compiler directives
(with OpenMP). Several implementations of regular and ir-
regular algorithms, taken from artificial intelligence field,
were made on an SGI-Origin2000 (a DSM architecture)
and compared both in terms of development time and of
execution time. Finally, we identify the most appropriate
paradigm for each kind of algorithm.

Keywords: Parallelism, Threads, OpenMP, Regular al-
gorithms, Irregular algorithms, Multi-agent systems, Artifi-
cial neural networks.

1. Motivations and objectives

This paper compares parallel programming paradigms
for regular and irregular problems. To illustrate this, two
classic problems of Artificial Intelligence (AI) field have
been chosen: an artificial neural network (ANN) as a regu-
lar computation problem, and a multi-agent system (MAS)
as an irregular one. They are both composed of multiple
autonomous entities that run concurrently, and are time-
consuming in many cases. Their natural parallelism could
be exploited to run on parallel computers, aiming at the
decrease of their execution times or the increase of their
data size. After the description of available parallelization
paradigms on shared-memory parallel computers, some of
these models and their algorithms will be briefly introduced
in sections 3 and 4.

Today, Distributed Shared Memory (DSM) architectures
[4, 10] exist, and are scalable up to several hundreds of pro-
cessors, as Origin2000 of SGI. Parallel computers support-
ing shared-memory paradigm are no more limited to a small
number of processors, as classic manufactured Symmetric
Multiprocessors (SMP) architectures (see [3]). We chose to
explore the shared memory parallel programming, as DSM
architectures seem to have a promising future.

Three main shared-memory parallel paradigms ex-
ist: communicating processes, classic multi-threading and
multi-threading based on compiler directives (for example
OpenMP). They have different development times and ex-
ecution performance. Among these three paradigms we
search for the most adapted for regular and irregular al-
gorithm implementations. Threads automatically share a
global address space and must explicitly allocate the thread-
private space, while processes keep their private address
space and must explicitly allocate shared memory to share
data [8]. Thus, multi-threading usually appears to be more
appropriate to parallelize applications doing computations
on shared data. Because of this we will ignore processes and
we will compare only classic multi-threading and OpenMP.

2. Programming paradigms for shared-
memory multiprocessors

2.1. Multi-threading programming evolution

The best way to use the shared-memory computers
seems to share the memory between tasks. This avoids the
memory copies necessary in standard message passing im-
plementations. Nevertheless, the trade-off is about the syn-
chronization operations. In classical multi-tasking, task cre-
ation, synchronization and communication are handled by
the programmer and the OS libraries. These operations are
very costly, which led to implementation of lightweight pro-
cesses: the threads [8]. But multi-tasking remains relatively

complex. So, to alleviate this problem the use of compiler
directives, which had been successfully tested on SIMD and
vector machines, has emerged again.

The low-level programming needed by the classic
threads and the lack of portability of compiler direc-
tives ([2]) led major parallel machine manufacturers, such
as Compaq, HP, Intel, IBM, SGI and Sun, and other soft-
ware developers to propose the OpenMP standard1, which
is better suited for large scientific applications. This stan-
dard, based on other essays like X3H5, has been designed
to allow an easier programming, and to be architecture-
independent and efficient on shared-memory architectures,
which some programmers consider as the main features of
an ideal parallel programming paradigm ([11]). OpenMP is
a set of compiler directives, along with some library func-
tions2 ([2]). The compiler directives allow mainly paral-
lel sections (and particularly the automatic loop decomposi-
tion), single sections (executed by only one thread), critical
sections, and barriers. The scope attributes of variables are
controlled by several clauses, like private, shared and reduc-
tion (see below). The OpenMP library provides functions to
control and query the parallel execution environment, and
lock functions.

It is worth-while to note that both models do not affect
the serial optimizations, like loop-unrolling3 and continu-
ous memory access, which optimize the pipeline and cache
memory usage. Some of these optimizations are done by the
compilers quite efficiently, others need to be done by the
programmer. Other problems arising in parallel program-
ming, like cache conflicts and false sharing4, can be avoided
by the operating system or by the programmer himself, but
are identical with multi-threading and OpenMP.

The next sections describe the strengths of both models.

2.2. OpenMP programming major features

OpenMP is aimed to be a portable, simple and efficient
parallel programming model on shared-memory architec-
tures ([2]).

It is of a higher level than the classic threads, and of-
fers some useful functionalities frequently used in parallel
programs. The creation of the threads is implicit and the
domain of every thread in loop decomposition5 is automat-
ically calculated, unlike classic multi-threading. Here is a

1Available since October, 1997
2See “OpenMP C and C++ [or Fortran] Application Program Inter-

face”, available at www.openmp.org
3Serial optimization which consists of transforming an � -loop into an

����� -loop by explicitly writing � times the body of the loop
4The sharing of the same cache line by two variables, which may lead

to unwanted cache conflicts in a parallel execution
5Method of parallelizing a loop consisting of allocating an interval of

the index of the loop to every thread

basic example of loop decomposition, accessing continu-
ously the memory, in classic threads and OpenMP:

// Classic threads version
// size: the number of values assigned to every
// thread (the last may have more)
size = last_index / nb_threads;
first = MY_TID * size;
last = (MY_TID != nb_threads-1) ?

first + size : last_index;
for (i=first ; i<last ; i++)

array[i] = ...;

// OpenMP version
// automatic loop decomposition
#pragma omp parallel for
for (i=0 ; i<last_index ; i++)

array[i] = ...;

Due to the pragma directives (which are not taken into ac-
count by the compilers which do not recognize them) the
sequential and the parallel version are the same, unlike in
classical thread programming. This leads to an important
issue: an (already) existing sequential program can be very
easily parallelized by adding OpenMP directives to it. For
instance, a loop with independent computations in a C pro-
gram can be parallelized simply by adding the next directive
before it:

#pragma omp parallel for

This is very useful for legacy-code or for already written
programs which need a rapid and error-less parallelization.
Several directives accept clauses that control the scope at-
tributes of the variables among the threads. For example,
adding a private clause to the directive above generates
a local and private copy of the variable i for each thread:

#pragma omp parallel for private (i)

OpenMP also provides some high-level clauses frequently
used in parallel programs, such as reduction, which ap-
plies the same operation on different variables and accumu-
lates the result in a variable6, and single, which starts
a region executed by only one thread. They may be im-
plemented in an optimized way by the compiler; for exam-
ple a tree-based parallel reduction or a first-thread execute
for single regions. In [2] other features are presented, like
the ability to directly access memory throughout the sys-
tem, fast shared-memory locks and its scalability and per-
formance.

2.3. Classic multi-threading programming major
features

Contrary to OpenMP, the classic threads need some ef-
fort to allow the features presented above. On the other

6Reduction example:
for (i=0 ; i<100 ; i++) sum = sum + func(i);

hand, being at a lower level, all OpenMP functionalities can
be expressed by threads. Additionally, thread expression
power is greater than in OpenMP. For instance, the Linux
Pthreads library7 provides three types of mutexes and pro-
vides semaphores, unlike OpenMP.

Classic thread programming allows a finer granularity of
parallelism, so a finer control of parallel regions. For ex-
ample, the barriers or the critical sections may concern only
some of the threads. This is more difficult to achieve in
OpenMP, where the barrier directives are bound to all the
threads. This may be useful for a domain decomposition,
where the threads need to synchronize only with their neigh-
bours and not with all the threads. This can be written in C
with a multi-threading library as follows:

// synchronization point for only 2 threads:
// number 0 and 2
if ((mytid == 0) || (mytid == 2))
barrier(2);

This lack of flexibility leads us to the idea that OpenMP is
more suitable for data parallelism than for task parallelism.

3. Parallelization of a regular algorithm: Ko-
honen map

3.1. Kohonen neural network introduction

The ANNs represent a powerful tool in AI. Their interest
domain ranges from pattern recognition to game theory and
human brain simulation. There are many kinds of ANNs,
but the implementation presented in this paper uses a two-
dimensional SOM (Self Organizing Map) Kohonen network
(see [7]).

A Kohonen network is formed by a map of neurons con-
nected to the input area (figure 1). If the map is a two-
dimensional array and the input array is multi-dimensional,
the network may be thought as a way to visualize multi-
dimensional images.

Like any other ANN, the use of the Kohonen network
follows two steps: the learning step and the testing step.
While learning, the input data are sequentially and repeat-
edly used until the ANN converges. During a cycle, one
input data is used as input of the ANN, and the weights of
some neuron connections are updated according to a for-
mula like (1). The involved neurons are the closest neuron
to the input data and its topological neighbours. The dis-
tance between (the weights of) a neuron and the input vector
is defined as follows:���������
	������� �� � ��������� ������

7See http://www.ap.univie.ac.at/users/havlik/
Linux/documentation/FAQ/Linux_Threads

win,out

input data vector neuron map
xin

Figure 1. An example of a Kohonen network:
a 2D neuron map connected to an input data
vector

where
� ��

is the element of index ��� of the input data, and� �� � ����� is the weight between the neuron "!$# and the ele-
ment

� ��
. The formula of the Kohonen map tends to bring

the output map closer to the input data by changing the
weights of the network connections:

� �� � �������%� �� � �����'&)(*�+� �� �,� �� � �����
�

(1)

where
(

, the learning-rate factor, is a number between 0
and 1 which gives the speed of convergence.

While testing, the weights do not change, and the output
of the ANN is used as the response of the ANN to the given
input data.

3.2. Kohonen ANN parallelization issues

As seen in section 3, the Kohonen ANN uses a static
network, where every output neuron is connected to every
input neuron ([7]).

A straightforward parallel Kohonen algorithm consists
of the following loop:

1. update the parameters: the learning-rate factor and the
radius of the neighbourhood;

2. run all neuron computations: each neuron computes its
distance to the current input data;

3. synchronization barrier for all neurons;

4. find the closest neuron to the current input;

5. run all weight update computations for the closest neu-
ron and its neighbours;

6. synchronization barrier for all neurons;

7. increment cycle counter.

The steps 2 and 5 are highly parallel, but with fine-grain
parallelism which is not adapted to MIMD architecture. To
parallelize this algorithm, an efficient partitioning may be
conceived, where each thread processes several neurons and
each neuron is processed by only one thread. Many such
types of partitioning insure an efficient load-balancing for
step 2. But for step 5 the involved output neurons are in
a neighbourhood, and the domain decomposition has to be
chosen so that each neighbourhood contains neurons pro-
cessed by a maximum of threads. The binding of the neu-
rons to the threads is done consecutively: the first neuron
is processed by the first thread, the second by the second
thread and, generally, the � th neuron is processed by the
thread number � ���������	��
 , where
 is the total number of
threads. Figure 2 shows such a partitioning for 6 threads,
on a 2D Kohonen output map. A more exhaustive study
which introduces many domain decompositions and paral-
lelization issues of Kohonen map is presented in [9].

53 4

5

21

3 4

5

1

3

5

4

2

21

5

43

1 2

1 2 3 4 5

21543

5

1 2 5

4321

3 4

1 2

432

53 4

53 4

1 2 3

1

21

54

543

5

1 2

432154321

432154321 6

66

6 6

6

6

6 6

6

6 6

66

6

6

Figure 2. Example of domain decomposition
optimizing the load-balancing for 6 threads

The calculations are independent, this avoids the major-
ity of cache conflicts. Also, each neuron data (its weights,
its input and its output) can be aligned on cache lines, in
order to avoid the false sharing. The data occupied by the
network uses a small memory space, so the processor cache
is sufficient. For example, a Kohonen network with 100 in-
put neurons and 256 output neurons has ����������� � ������
weights, or about �������������! of data. [1] introduces a spe-
cialized parallel library for artificial neural network imple-
mentation based on multi-threading, which deals also with
serial optimizations and false sharing avoiding on shared-
memory multi-processors.

Despite the features presented above, there are other
trade-offs in the parallelization of the Kohonen map algo-
rithm: there are two synchronization points per cycle and a
sequential bottleneck at step 4. These may limit the speed-
up obtained by its implementation.

3.3. Kohonen ANN performance

The comparative performance between Fortran-
OpenMP version and C-threads version is shown in
figure 3.

For the OpenMP version we used the Fortran language
because the SGI C compiler was not OpenMP compliant at
the time when the program was written (1999, February)
and we had not the time to write a C-OpenMP version.

The application used for the tests is fine-grained. It is a
��"�#�� neuron map connected to a ���$�#��� input data ar-
ray. As seen in the execution time curves, there is a small
gap between the sequential times of the two versions, due
to the language difference: Fortran vs. C (see [6] for such a
comparison). Their performance is comparable until 5 pro-
cessors, with a speed-up of about 3, which is the maximum
speed-up of the C-threads version. Beyond this number,
the Fortran-OpenMP version yields better results, with a
maximum speed-up for 7–8 processors (%�&('*),+.- �0/(1 2

).
So Fortran-OpenMP version is a bit more scalable than C-
thread version. The efficiency curve is relatively good until
4 processors, with a value of 70%.

As the results show, there is no major difficulty (beyond
the trade-offs inherent to the algorithm) in implementing a
parallel version of the Kohonen map. This is due to the
regularity of its calculations, as shown in section 3.2.

4. Parallelization of irregular algorithms: a
multi-agent system

4.1. Situated multi-agent system introduction

The goal of a situated multi-agent system (SMAS) is to
simulate a society of agents in a real world, i.e. where nat-
ural constraints exist. This allows to model behaviours of
agents for a maximum efficiency or to emerge yet unknown
behaviours. Though the definition of an agent is not yet
world-wide agreed, a situated agent can be thought as an
entity being in an environment (figure 4), capable of au-
tonomous actions to fulfill its goals, using its perceptions of
the environment and communicating with other agents ([5]).

For example, an SMAS may be used to model a set of
robots, as the implementation used in this paper. The real
world is modeled by an environment of 34�65 squares
containing obstacles (walls), where robots have to carry all
the ore from mines to factories. Every wall, mine or factory
occupies one square. During a cycle, a robot may stay, may
move, may take ore from a mine or may drop the ore it has
into a factory. If several robots try to enter the same square,
a spatial conflict appears. The system will let then only one
to enter the square, the others have to stay. The robots are
guided by a potential field simulating the odour, which is a
decreasing function of the distance between the robot and

0

5

10

15

20

25

30

35

40

45

50

1 2 4 6 8 10 12 14 16

ex
ec

ut
io

n
tim

e
(s

ec
)

number of processors

C-threads
Fortran-OpenMP

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 6 8 10 12 14 16

sp
ee

d
up

number of processors

C-threads
Fortran-OpenMP

0

0.2

0.4

0.6

0.8

1

1 2 4 6 8 10 12 14 16

ef
fic

ie
nc

y

number of processors

C-threads
Fortran-OpenMP

Figure 3. Comparative results of C-thread and
Fortran-OpenMP implementations of Koho-
nen map

cooperation
actionsperceptions

environment

behaviour

Figure 4. Illustration of the agent concept

the mine/factory. To avoid the walls, the implementation of
this potential field uses a wave propagation algorithm (see
below).

4.2. SMAS parallelization issues

Unlike ANNs, the SMASs are generally more complex
and dynamic. The application is dynamic due to the agents
which move, and also to the environment, which changes its
state. The agents and the environment are mainly the parts
which may be parallelized. They may have a different par-
titioning, but, in order to minimize the cache conflicts, the
same domain-partitioning was chosen. However, the load-
balancing becomes a goal difficult to achieve. Sometimes
an agent may stay (doing nothing), sometimes it may be
looking for a source. When choosing a domain-partitioning,
the agents may migrate from a domain to another, and the
potential of a source, which changes in time, may spread on
several domains. A dynamic load-balancing may be imag-
ined, but this is not easy to implement and leads to cache
conflicts. Several synchronization points are needed in or-
der to solve the spatial conflicts and to correctly propagate
the potential of the sources. The dynamic nature of the
SMAS results in other actual parallelism issues, like false
sharing and cache conflicts.

Due to their complexity, the data needed by these ap-
plications fits no longer in the processor caches. A com-
mon example is a ��� � � ����� environment with

2 � � agents,
which may occupy several Mbytes of memory. Thus, a care-
ful algorithm has to be used in order to make the best use of
the caches.

The irregularity of this system is exemplified by the use
of the wave propagation algorithm, which may be the main
time-consuming part of this SMAS. Its parallelization is
described in the next section.

Wave propagation algorithm

The reason for using this algorithm is that it tries to bet-
ter simulate a real hypothesis: the intensity of the potential

(odour for example) of a source in a square of the envi-
ronment is proportional to the distance to that source, with
avoidance of obstacles (figure 5). If a square belongs to the

Obstacle

potential way,

Source

increasing

avoiding
obstacles

Example of

Figure 5. Wave propagation algorithm illus-
tration

potential field of several sources, the maximum potential is
used by the square. This allows an agent to avoid obsta-
cles, following increasing potentials. But the parallelization
of this algorithm is a difficult task, because the potential
of a square may be influenced by several sources, and the
sources may be processed by different threads. Three vari-
ants of its parallelization have been explored:

1. domain decomposition: the environment is decom-
posed in several domains. Every thread works on a
distinct domain and updates the potential of its squares.
The potential field of a source may spread on several
domains. Several boundary exchanges then may need
to take place, each of them requiring a synchronization
point for several threads.

2. data decomposition with thread-private environments
(figure 6): as a first step, every thread works on a

A2 A3A1 E

global
environment

thread-private
environment

thread-private
environment

thread-private
environment

Figure 6. Example of data decomposition for
the wave propagation algorithm (3 threads)

part of the sources, and updates its potential field on

a whole thread-private copy of the environment. Af-
ter that, as the second step, the environment is updated
using the thread-private copies of the environment: ev-
ery square of the environment has a potential equal
to the maximum of the corresponding squares of the
thread-private environments. This solution needs a lot
of memory (for the private environments) and leads to
many cache conflicts for the second step.

3. data decomposition with mutexes: every thread prop-
agates the potential of a part of the sources. To solve
the concurrent access to a square influenced by sev-
eral sources, a mutex (variable used to ensure a mutual
exclusion region) per square or per group of squares
is used. This leads to expensive operations needed by
mutex operations.

The dynamic nature of such kind of irregular applica-
tions may decrease the performance of their implementa-
tions on actual parallel machines and makes difficult their
OpenMP implementation. We encountered important diffi-
culties during OpenMP implementation of our SMAS and
we stopped it after the same development time accorded to
the C-thread version.

4.3. SMAS performance

The performance of the C-thread implementation is
shown in figure 7.

The time decreasing is not negligible: in the best case
the sequential time can be decreased by 60%, and the im-
plementation scales well: the speed-up curve is closed to a
line until 14 processors. But its maximum value, equal to
2.7, needs 16 processors and it is far from the ideal speed-
up (% & ' � �

� � �
), so efficiency is low, as we can see on

the efficiency curve which decreases quickly.

5. Performance comparison

Situated multi-agent systems and Kohonen maps have
different natural parallelism, and introduce different par-
allel algorithmic issues. A Kohonen neuron needs a few
computations, and uses only local variables (its weights,
its inputs and its output). It has a natural fine grain paral-
lelism. Moreover, more complex neural networks exchange
data between neurons, for example between associative Ko-
honen maps, and have a natural message passing paradigm.
At the opposite, an agent can need a lot of computations,
and uses a data structure modeling the environment shared
by all the agents. This global data structure can be an im-
portant source of memory contention and false sharing. Fi-
nally, situated multi-agent systems present a natural inten-
sive memory sharing paradigm.

0

50

100

150

200

250

1 2 4 6 8 10 12 14 16 18 20

ex
ec

ut
io

n
tim

e
(s

ec
)

number of processors

C-threads

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8 10 12 14 16 18 20

sp
ee

d
up

number of processors

C-threads

0

0.2

0.4

0.6

0.8

1

1 2 4 6 8 10 12 14 16 18 20

ef
fic

ie
nc

y

number of processors

C-threads

Figure 7. Results of C-thread implementation
of a Situated MAS on an SGI-Origin2000

Regular algorithm: Irregular algorithm:
Kohonen map Situated MAS

Implementation C-
threads

Fortran-
OpenMP

C-
threads

C-
OpenMP

Maximum speed-
up

3 3.5 2.7 –

Optimal thread
number

5 7–8 16–18 –

Parallelization
complexity

middle low high –

Development time 2 weeks 1 week 5 weeks
�

5
weeks

Source code lines 450 400 950 850

Table 1. Implementation development infor-
mation

These applications have different natural parallelism and
they need special parallel implementation mechanisms to
run efficiently by avoiding the problems presented above
(memory contention, false sharing and fine-grained compu-
tations). This leads the programmer to deviate from their
natural parallelism:

� Firstly, best results of Kohonen map parallelization
were obtained processing several neurons by task, with
loop decomposition in OpenMP (see section 3.3);

� Secondly, our situated multi-agent system has needed
an explicit multi-threading parallelization, based on
domain-decomposition of the environment, and not on
a partitioning of the agents among the processors. As
seen in section 4.2, its irregular computations could not
be easily expressed with OpenMP.

Table 1 summarizes information about the implementa-
tions of an ANN as a regular problem, and an MAS as an
irregular problem. No theoretical comparison was done, but
from these experiments we can deduce that:

1. The execution times of both classic multi-threading
and OpenMP implementations are comparable for reg-
ular applications.

2. The development time with OpenMP is much less than
with classic threads in regular applications. So in our
experience OpenMP is more user-friendly than explicit
multi-threading, as we have learned it in very short
time and have successfully used it for Kohonen par-
allelization.

3. For irregular applications the higher-level of OpenMP
leads to difficulties in programming. Sometimes, the
use of foreign parallel functions is necessary, so we
think that OpenMP still remains limited to regular
computations.

For concreteness, we present here the experimental con-
ditions. The applications were run on a supercomputer
SGI-Origin2000 [3], with 64 processors MIPS R10000 at
195MHz, each with 4MB L2 cache. The operating sys-
tem was Irix64, version 6.5.6f. The programs were writ-
ten in C and Fortran and compiled with the native com-
piler, MIPSPro, version 7.3.1m. The compiler optimiza-
tion flag used was -Ofast=ip27 (maximum standard op-
timization) and the tests were made in exclusive (mono-
user) mode.

6. Conclusions

The new-emerging DSM architecture leads to a regain
of interest for shared-memory programming paradigm. We
have compared two such parallel programming paradigms:
OpenMP and classical multi-threading. The comparison
was done on two kinds of applications, a regular one and
an irregular one, both in terms of development time and ex-
ecution time.

Based on the tests shown in this paper (section 5) and
on our experience, both with us and with some students at
Supelec, we have arrived to the following conclusions:

� For regular applications, multi-threading and OpenMP
yield the same execution times, but OpenMP program-
ming needs a development time about twice smaller
than classical thread programming. We advise to use
OpenMP for parallelization of regular applications, as
it provides fast parallel executions and is easy to learn
and to use.

� Irregular applications are much more difficult to paral-
lelize. The multi-threading paradigm seems to be nev-
ertheless much simpler to program than the OpenMP
one because of its expression power.

Acknowledgments

Support for this research is provided in part by a grant
from Région Lorraine (France), and access and support to
Origin2000 supercomputer are provided by Charles Her-
mite Center (France).

References

[1] Y. Boniface, F. Alexandre, and S. Vialle. A library to imple-
ment neural networks on MIMD machines. In EuroPar-1,
1999.

[2] L. Dagum and R. Menon. OpenMP: An industry-standard
API for shared-memory programming. IEEE Computational
Science & Engineering, 5(1):46–55, Jan.-Mar. 1998.

[3] J. Fier. Performance tuning optimization for Origin2000
and Onyx. Available at http://techpubs.sgi.com/
library/manuals/3000/007-3511-001/html/
O2000Tuning.0.html.

[4] A. Grujić, M. Tomas̆ević, and V. Milutinović. A simulation
study of hardware-oriented DSM approaches. IEEE Parallel
& Distributed Technology, 4(1):74–83, Spring 1996.

[5] N. Jennings and M. Wooldridge. Applications of intelli-
gent agents. In N. Jennings and M. Wooldridge, editors,
Agent Technology. Foundations, Applications, and Markets.
Springer, 1998.

[6] L. Kale. Programming languages for CSE: The state of the
art. IEEE Computational Science & Engineering, 5(2):18–
26, Apr.-June 1998.

[7] T. Kohonen. Self-Organizing Maps. Springer, second edi-
tion, 1997.

[8] B. Nichols, D. Buttlar, and J. P. Farrel. Pthreads Program-
ming. O’Reilly & Associates, Sept. 1996.

[9] I. Pitas, editor. Parallel Algorithms for Digital Image Pro-
cessing, Computer Vision and Neural Networks. John Wiley
& Sons, 1993.

[10] J. Protić, M. Tomas̆ević, and V. Milutinović. Distributed
shared memory: Concepts and systems. IEEE Parallel &
Distributed Technology, 4(2):63–79, Summer 1996.

[11] D. Skillicorn and D. Talia. Models and languages for paral-
lel computation. ACM Computing Surveys, 30(2):123–169,
June 1998.

