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Abstract—Broadcasting is a widely used dissemination tech-
nique in wireless multi-hop networks. The simplest broadcast-
ing technique, the pure flooding, is quite inefficient in terms
of number of packets generated. Whereas numerous ways to
optimize it in classical networks have been proposed, we found
no proposition appropriate for very dense networks (nodes having
thousands of neighbors or more) with resource-constrained
nodes. Typically, nodes have to prevent the broadcast storm
problem using only a partial or even no information about
their neighborhood due to memory scarcity. At the same time,
they have to avoid the die out problem commonly found in
broadcasting techniques. In this article we propose an efficient
broadcasting scheme for dense nanonetworks. It combines an
estimator of the number of neighbors, a backoff window and
a counter of packets. We explain why this method is efficient
in dense networks. Based on simulation results, we show that
on a random dense network it reduces by 71% the number of
packets exchanged in the network compared to an optimized
method found in the literature, while at the same time avoiding
the die out problem.

I. INTRODUCTION

Multi-hop networks usually rely on broadcasting as a way to
convey information to all nodes in the network. In low density
networks, i.e. where nodes have only tens or maybe hundreds
of neighbors, the multi-hop broadcasting is relatively simple
and has been extensively studied, with optimal or almost
optimal solutions proposed. But in (very) dense networks the
usual solutions have issues. Pure flooding has a prohibitive
cost. Probabilistic flooding methods may work, but they need
many packets exchanged in order to achieve a good coverage
of the network. Moreover, counter-based methods (introducing
a form of controlled redundancy) do exist in macro networks,
but are not transposable as is in dense networks.

We define dense networks as networks with so many
neighbors that the classical protocols handle common tasks
inefficiently. For instance, the Wi-Fi DCF channel access
method is already quite inefficient when 100 nodes need to
send packets at the same time. The initial 32 slots backoff
window [1] gives a high probability of collisions, and pro-
gressively increasing the backoff window up to 1024 time
slots, even if eventually allows nodes to send their data, leads
to a lot of wasted time. A second example is the classical
problem of RFID tags counting. To handle large number of
tags, usual methods are very ineffective. Methods coping with
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high number of neighbors have been proposed, involving either
static parameters [2] or, better, dynamic ones [3].

Nanonetworks are a recent incarnation of dense networks.
They are formed of nodes of nanometric size, which we
call nanonodes. Nanonetworks potential uses include pro-
grammable matter, advanced health monitoring, and wireless
network on chip (WNoC). Due to their tiny size, the energy,
memory and computation capacity are extremely scarce. Clas-
sical modulations techniques consume too much energy (if
only for the carrier), and a specific TS-OOK modulation has
been proposed [4], where a sender highly synchronized with
the receiver sends an energy pulse as bit 1, and silence as a
bit 0. In this context, a dense network is a network where nodes
have at least a few hundreds neighbors (with many thousands
still plausible).

Existing broadcast scheme for other dense networks, such
as Vehicular Ad hoc NETworks (VANET) [5] and Wireless
Sensors Networks (WSN) [6], are not applicable to nanonet-
works. Nanonodes cannot use geolocation techniques which
would allow them to find out the most suitable forwarder.
Moreover, their small memory cannot contain the potentially
huge list of their neighbors.

Last but not least, in nanonetworks, nodes do not sequen-
tially access the channel. Different packets may overlap. In the
example of packet counting (used in this article), nodes take
an action depending on the number of copies received. In Wi-
Fi and most macro scale protocols, the access to the channel is
sequential [1]. Thus, each time a node is allowed to transmit,
it knows precisely how many copies have already been sent.
On the contrary, in nanonetworks, packets naturally overlap.
At a given time, a node may not be aware of the copies already
being sent (as they or at least their headers have not been fully
received). This leads to nodes eventually receiving much more
copies than intended, and is only one example of why current
schemes are not suited to dense nanonetworks.

The contributions of this article are the following. We
propose a method to efficiently broadcast information in dense
networks. It combines a density estimator, a backoff window,
and a packet counter. We explain why this method would be
efficient in such networks. We analyze the efficiency of two
parameters: the counter value (redundancy) and the backoff
window size. Finally, we compare it with probabilistic flooding
and pure flooding from two points of view, network coverage
and packets exchanged, and show its superiority.
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Fig. 1. In TS-OOK, packets may overlap by bit interleaving.

The article is organized as follows. Section II presents
the background, and Section III presents related work. The
flooding method we propose for dense networks is detailed
in Section IV, and Section V shows and analyzes simulations
results. Section VI draws the conclusions.

II. BACKGROUND
A. Electromagnetic nanocommunications

A nanonetwork is a network composed of submicrometric
nodes [7] with communication capabilities. Due to high signal
attenuation and very low transmitting power, nanonodes are
able to receive bits from only a few milimeters away [8].

Nanonetworks are a good example of potentially dense
networks. For example, for a 3D isomorphic communication
range of » = 5mm and nanonodes of volume v = 10 ,um?’, a
node can have up to 4732 ~ 5 x 10'° neighboring nodes.

A modulation scheme (TS-OOK) has been proposed [4],
which uses an electromagnetic pulse of duration T}, to transmit
a bit “1”, and silence (no transmission) for bit “0”. The time
between (starting of) two consecutive bits is 7. Due to hard-
ware and power constraints, the spreading ratio 8 = T /T, can
be very large. Using T,,=100 femtosecond and 3 = 1000 [4],
the total available bandwidth is very high, in the order of
terabit per second.

Such a modulation scheme has a few peculiarities. One of
them, useful for our study, is time multiplexing of packets:
numerous packets are being transmitted ar the same time,
as shown in Fig. 1. Otherwise said packets overlap by bit
interleaving. This is similar to TDMA (time-division multiple
access), however, whereas in TDMA the multiplexing is done
at communication level, in nanonetworks it is done at packet
level. These simultaneous communications do not excessively
rise the collision probability, and they could even be all
correctly received at a given node, provided that bits do not
collide. Note also that collision of two bits does not always
leads to an error: an error occurs only when the receiver is
receiving a “0” (silence) and at the same time a “1” arrives,
which hides the “0”; the three other cases (receiving two
silences, or receiving a “1” at the same time with a “0” or
“1”’) do not lead to a transmission error.

Those specificities along with the simplicity of nanoma-
chines that prevents using the usual TCP/IP network stack
oriented us to develop a specific simulator that will be briefly
presented at the beginning of section V.

B. Node density estimation

In our backoff flooding method, similarly to adaptive prob-
abilistic flooding, nodes need to know the number of nodes
found in their communication range. In low density networks,

nodes could simply send a hello message containing their
unique ID, and count the packets received. However, in
dense networks, this would lead to numerous collisions and
transmission errors. Moreover, a node with several thousands
of neighbors does not have enough space to store a list of
all its neighbor IDs. Thus, despite having several estimators
proposed in the literature [9], [10], DEDeN (Density Estimator
for Dense Networks) [11] is, to the best of our knowledge, the
only efficient density estimator in dense networks.

DEDeN does not find the exact number of neighbors, but
allows to set a precision and a confidence in the estimation,
which in turn influences its cost (in terms of packets sent).
This is very useful, since for the flooding protocols used in
this paper for example, the estimation does not need to be
very precise (a 30% error margin with a confidence of 95%
leads already to very good results), in which case the cost of
DEDeN is quite small. Also, DEDeN works with any range
of neighbor densities.

ITI. RELATED WORK
A. Sequential medium access assumption

Most related works consider a 802.11-like medium access.
Here, the channel can be used by at most one transmitting
node at a time, i.e. when a node sends data, the other nodes
have to wait, the transmission of a packet being an “atomic
operation” [1]. Additionally, packets are sent sequentially, one
at a time. On the contrary, in nanonetworks, packets from
different nodes can overlap. Therefore, many methods found
in the literature cannot be used in our context.

B. Pure flooding

The simplest method to broadcast information to all the
nodes in a network is flooding. The initial packet is sent by
the source node, and each node receiving the packet forwards
a copy of it (we call it forwarder). This method generates an
immense overhead in terms of packets exchanged, a deficiency
known as the broadcast storm problem [12]. As such, it is
rarely used.

C. Adaptive probabilistic flooding

In probabilistic flooding, the nodes that receive a packet
forward it with a certain probability. This greatly reduces
the number of forwarders. The probabilistic flooding remains
memoryless: the decision about forwarding is taken as soon
as the packet is received, and packets do not need to be saved
in memory.

A fixed probability yields good results only for the corre-
sponding neighbor density (for example, for a neighborhood
density of 100, a probability of 10% means an average of
10 forwarders per communication range). Adaptive schemes
automatically adapt the probability based on some information.

Numerous (adaptive) probabilistic flooding methods have
been proposed [13], their difference being in the information
(such as number of neighbors, node speed or energy) and
the formula used to compute the probability. For the purpose
of our article, a typical example is when the probability of



Fig. 2. Die out problem: incomplete broadcasting (black zone on top-right).

forwarding is set to k/n, with k an efficiency parameter to
increase the reachability of the broadcast to the detriment of
method overhead (number of packets sent), and n the number
of neighbors [14]. In the results section we compare our
method to this one.

All these methods have a common drawback, which lies
in the use of probabilities: they do not insure that a packet
will eventually be forwarded to all the nodes in the network.
For example, in a zone with 100 neighbors and probability
of 5%, usually 5 nodes will forward the packet, but it also
could happen that no node chooses to forward the packet.
This can lead to the die out problem, which appears when the
packet does not reach some zones in the network, as shown
in Fig. 2, plotted with our simulator.

D. Adaptive counter-based schemes

To avoid the die out problem, in adaptive counter-based
schemes, nodes count the number of copies of a given packet
to decide whether to forward the packet or not. Numerous
methods of this family have been proposed [13].

For instance, GOSSIP3 [15] uses a fixed forwarding prob-
ability. If the decision taken is to not forward, the node
waits a given time, and if it has not seen a given number
of copies, calculated from the forwarding probability and the
number of neighbors, it will still forward it. In AGAR [16],
the forwarding mechanism is split in two phases. In the
first phase nodes decide to forward or not a packet with a
fixed probability. Nodes that have decided to not forward the
packet wait, in the second phase, for a given time; if the
number of copies received is below a given threshold, they
will forward the packet with a probability depending on the
initial probability and the number of neighbors.

The adaptive scheme proposed in [17] uses the number
of neighbors to compute the required number of forwarders.
In very sparse networks, several forwarders are required,
because nodes need to cover large areas. On the contrary,
in the nanonetwork context, as we will see later, because of
higher node density, fewer forwarders are needed, and one will
usually be enough.

Moreover, in 802.11-like medium access, as used in [17],
the backoff window used for broadcasted packets is fixed
and small. This is not appropriate in nanonetworks, where
the number of neighbors varies widely, and as such we will
dimension the backoff window before forwarding using the
number of neighbors.

E. Geoforwarding and OLSR

Geoforwarding protocols are protocols that rely on geo-
graphic information about node positions to take the forward-
ing decision [18]. Geoforwarding is often used in WSN to
select the furthest possible forwarder and then optimize the
coverage and reduce the number of forwarders. Node positions
can be obtained:

o directly through a GPS embedded in each node;

« by triangulation techniques, using relative positions of
nodes obtained using anchors, beaconing or techniques
relying on signal strength [19].

Node positioning methods do not fit the nanonetwork re-
quirement. Due to their small size and low energy available,
nanonodes can neither embed a GPS, nor compute their
position without an underlying infrastructure.

As mentioned before, nanonetworks may be extremely
dense. This huge amount of neighbors and the low memory
available on nanonodes make useless all kinds of protocols
that rely on detailed neighborhood knowledge or routing table,
such as OLSR [20] and its variants.

E Clustered networks

Hierarchical (or clustered) routing protocols are often used
in WSN [21]. The network is split into several clusters, in
which a node assumes the role of leader, commonly called
cluster head. Cluster heads are similar to routers in IP net-
works, in that the information generated by nodes is routed
by them, generally towards a gateway or a sink.

Clusterization is not suitable to nanonetworks for several
reasons. First, additional protocols are needed, for cluster
head election for example. Also, given that cluster heads are
points of failure, such a system needs to include techniques
to deal with fault tolerance. Moreover, since cluster heads
treat data from the nodes in their region, plus data from other
clusters heads, they consume much more energy, and need
more resources, such as higher computation capacities and
much more memory (for waiting queues), than the other nodes.
This does not meet the requirements of nanonodes.

To conclude, classical broadcasting methods are not ap-
plicable to nanonetworks. Moreover, since nodes have low
memory and processing capability, they cannot maintain a
complete image of their neighborhood, useful to find optimal
forwarders. Maintaining even a one-hop neighbor list becomes
indeed excessively costly when neighbors are of the order of
thousands. Therefore, we propose a new adaptive density- and
counter-based method, detailed in the next section.

IV. BACKOFF FLOODING

Backoff flooding works as following. When a node receives
a packet for the first time, it starts a time counter. If it has
received a given number of copies of the packet before the
timeout, it simply discards the packet. Otherwise, at the end of
the period, it forwards (by broadcast) the packet and discards
it. In both cases, it memorizes the ID so that it does not treat



again a copy of that packet. Note that nodes never retransmit
a packet (i.e. send multiple copies).

To operate, this method combines a counter of packets, a
waiting window and a density estimator.

Let us recall the importance of the counter of packets.
Depending on the network density and communications, the
broadcast propagation may lead to problems. For example,
packets may be lost due to collisions. Also, because multi-
hop broadcasting methods tend to randomly select forwarders,
non optimal ones may be chosen, and in the worst case a
forwarder may not forward the packet to new nodes, effectively
halting its propagation. To avoid this, backoff flooding uses
a redundancy (packet counter) parameter, whose role is to
guarantee that a message is forwarded at least a given number
of times. It will be analyzed in the simulation section.

The estimator, discussed in Section II-B, is used in the
waiting window. Finally, the waiting window is described in
the next section.

A. Waiting window size

An essential part of our method is the use of a carefully-
sized backoff window. Let us recall that because of the
high temporal multiplexing capability of TS-OOK modulation,
many copies of a packet can start being sent before nodes
decode them. This issue can be solved by adding a waiting
time to packet forwarding, commonly called backoff, or RAD
(Random Assessment Delay) in [13], which also helps to
drastically reduce collisions.

It was stated in [13] that “there is no a clear evaluation of
the role played by RAD. There is no evaluation on the optimal
value of RAD in counter-based schemes.” Here, we consider
a RAD chosen uniformly between O and ¢. Intuitively, the
selection of the upper bound ¢ has the following impacts:

o A small value of ¢ when the local nodes density is high
means a high probability of concurrent copy transmis-
sions, and even collisions.

o A large value of ¢ means a uselessly long backoff period,
hence a higher end to end delay in the transmission.

Because of this, we decided to tie ¢ to the local nodes density,
obtained through an estimator, as presented in section II-B.
Contrary to classical backoff, where the average real delay
added at each hop is the average between 0 and the window
size, in our case the packet is forwarded with the lowest
backoff drawn.

To find out ¢, let tgmae = - be the time for a bit to
reach the edge of the communication range (c is the speed
of light and cr is the communication range), {1 = Ts X s
the transmission time of a packet (T is the time between two
consecutive bits, cf. Section II, and s is the number of bits of
the packet), i.e. the time elapsed between the sending of the
first and of the last bit of the packet, and ¢, the processing
time required to decode the packet and decide to forward it.
Without backoff, the time after which a node can be sure that
a neighboring node has forwarded a packet is:

twait - 2(tdwuw; + tpkt + tproc) (1)

40000 T T T T T T

°
o4

~
[GESRG Ry

7T7T"_

i

35000
30000

oo

25000 E
20000 E
15000 [ 1

Number of nodes

10000 | 1

| ,)(.(% ]
- - ¥ l’ = - - - —— -

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of copies received

Fig. 3. Distribution of the number of copies received due to packet
multiplexing for an intended redundancy of 5 and various values of k: for
large values of k, almost all packets are received exactly 5 times per node;
for small values of k, packets are often received 6 times or more.

which accounts for the packet and its forwarding copy to go
back and forth to the furthest node in the communication
range. It should be noted that ¢,,.,. can be treated as a constant
and does not impact the behavior of the protocol. Then the
ideal maximum backoff ¢ is:

t=kxnxtyut 2)

where n is the estimated number of neighbors given by the es-
timator and k is a multiplying factor affecting the distribution
of the number of forwarders, studied in the following.

B. k multiplying factor effect on the number of forwarders

As specified above, the backoff value depends on the num-
ber of neighbors in order to avoid concurrent forwarding copy
transmissions and collisions. It should be noted however that,
fundamentally, backoff flooding does not guarantee an exact
number of forwarders, for two reasons: packet overlapping and
geometry of node positions.

To see the influence of the first reason on the number of
forwarders, let us recall that backoff flooding involves a ran-
dom number, potentially allowing several nodes to choose very
close backoff values. Due to nanocommunication specificities
(collision and packet multiplexing), multiple copies of a given
packet may be sent simultaneously. The larger k, the smaller
the probability to have concurrent copies being transmitted.
This is illustrated in Fig. 3 for an intended redundancy of 5,
1150 neighbors, t,,4;+ = 8 nanoseconds, and for various values
of k. In this scenario, nodes ideally should receive exactly
5 copies of a given broadcasted packet. But with small k, it
happens frequently that the reception of a previous copy is
not finished (and thus still ignored) by the moment a node
decides to forward another copy. The end result is that nodes
often receive far more than 5 copies.

The number of copies received by nodes increases further
because of the geometry of the area covered by each copy
transmission. The phenomenon is illustrated in two dimensions
on Fig. 4 for a redundancy of 1. An omnidirectional com-
munication radius is considered for an original transmitter T’



(Fig. 4a). Among all the nodes in the reception area, the
one that picked the shortest random backoff duration (R1)
forwards the packet (Fig. 4b). The nodes in the darker area
having received a copy, they cancel their scheduled copy trans-
missions. Among the nodes touched by the initial transmission,
a crescent has not yet received a copy. A node R2 in this
crescent will then reach the end of its backoff period and sends
a new copy (Fig. 4c). By doing so, part of the nodes will get a
second copy, while the area that has not yet seen a copy will be
reduced. A third transmitter R3 sends a copy, finally ensuring
that all nodes in the initial transmission area have seen a least
one copy (Fig. 4d). As the message further propagates, it can
easily be seen on Fig. 4e that most nodes will have received
more copies than intended.

The influence of both reasons mentioned above can be seen
in a simulation (using the BitSimulator software presented
in the next section) to count the effective number of copies
received by nodes for various values of k. As previously, the
average neighborhood is 1150 nodes, the intended redundancy
is 5, and t,4 = 8 nanoseconds. DEDeN provided the
neighborhood estimation with a 95% confidence to have a
30% maximum estimation error. Fig. 5 presents the results.
Compared to Fig. 3, the curves are flatter (maximum is around
9000, compared to around 36 000), the reason being that the
geometry is taken into account too. Similarly, the required
redundancy is always met (5 copies at least). Also, on the one
hand, the values of k& smaller than 0.5 induce an increase in the
number of copies transmitted. On the other hand, big values of
k increase backoff window size, cf. (2), and as such increase
delay. Consequently, from now on, we will use £k = 0.5 as
it represents a good tradeoff between number of copies and
delay.

C. Delay incurred

In backoff flooding, upon first reception of a packet, a node
chooses a backoff value inside the backoff window ¢. The
packet is delayed either until that backoff (when the packet is
forwarded), or until it receives redundancy copies of the packet
(and the packet is discarded), whichever occurs first. During
that time, the packet needs to be stored in node’s memory.

In the following we analytically compute this delay for a
redundancy of 1. We model this time as being the minimum
value among n values (n is the number of neighbors) drawn
at random in a window of size ¢ femtoseconds.

The probability for a node to draw a backoff b superior to
an arbitrary value v € [0, ¢[ (with b and v integers) is:

t—ov

P(b>wv)= .

3)

On the other hand, the event described by “the minimum
backoff drawn is superior to v” is equivalent to the event ’the
backoffs drawn by the n nodes are superior to v”. As such,
the probability of the latter event is given by:

P(buin > v) = (P(b> v))" = (t . ”)n @)

where by, is the mimimum backoff drawn. Then, the proba-
bility for by, to be inferior to v is:

P(bmin < ’U) =1- P(bmin > U) @)

The probability for by, to be in an interval |vy, vs] can be
computed from (4) and (5):

P(v1 <bpin <wv2) =

P(bmin < UQ) - P(bmin < U1X6)

- 0 o

Fig. 6 shows the probability for the minimum backoff to
be in a 1% interval of the backoff window, i.e. between
2t/100 and (x+1)¢/100. This probability is shown for several
densities (10, 100 and 1000 neighbors) and hence for several
backoff window sizes, since the backoff window’s length
directly depends on the number of neighbors, as given in (2).
Fig. 6 shows, for instance, that for n = 100 the probability for
bmin to be inferior to 3% of t is greater than 0.95. Looking at
(2), 3% of t is a small value, at the same order of magnitude
than back and forth time t,,4;;. Additionally, the greater the
density, the smaller the part of the backoff window used by

bmin .

D. Memory usage (amount of time packets are stored in nodes’
queue)

In backoff flooding, a node that receives a packet has to store
it until it receives a given number of copies of the packet,
but without exceeding the duration of the backoff. We are
interested in the amount of time this packet is stored in node
because, due to their tiny size, nanonodes have a small amount
of memory. Nodes also memorize the IDs of the broadcasted
packets, so that they do not treat them again; however, we
neglect this, given that only an ID is memorized and only for
a short time.

We formalize the amount of time as following. We need to
compute for any number of participating nodes n, any desired
redundancy r, and any value v € [0,¢], the probability P of
the event “r values are in the interval [0,v[ and the others
n — r values are in the interval [v,t]”.

Each of the n values can be either strictly inferior, or
superior to v. This means that there 2" different cases. Among
them, () cases have r values strictly inferior to v. Now,
the cases are not equiprobable: the probability of a case is
the product of the probability of each value to be inferior
or superior to v. The probability p for a value to be strictly
inferior to v is v/t, and to be superior to v is 1—v/t. Therefore,
the probability for each of the () cases is p" x (1 —p)"~".

-
From that we can finally compute P as:

@ x (P x (1=p)"") ®)

o ()<=

Fig. 7 shows (9) for ¢ = 199804 ns, n = 1000, redun-
dancies r from 2 to 7, and various values of v. For these
parameters, nodes very rarely need to store the packet for

P =
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a time greater than 800 ns. After this value, the probability
decreases abruptly: for example, the probability for four values
(r = 4) to be smaller than 800ns (which is approximately
0.4% of t) is 0.19, while the probability to be smaller than
1600 ns is 0.05.

Fig. 7 shows that the curves are not monotonic. To explain
this, let us take the example of two values (r = 2). For small v
(close to 0), the probability to have the two values smaller
than v increases with v. Similarly, for big v (close to t), the
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Fig. 7. Probability for r values to be smaller than time v in a window
of 199804 ns.

probability to have n — 2 values greater than v (i.e. 2 values
smaller than v) increases with the decrease of v. The increasing
curves both from 0 and from ¢ explain the non monotonicity
of the curves.

To resume, for a redundancy of 4 and a backoff window
of 199804 ns, in 95% of cases the packet is stored in node’s
memory for at most 1600 ns, i.e. 0.8% of the window.

V. SIMULATION

A. BitSimulator overview

Many technological issues need to be solved before building
nanomachines and nanonetworks. Also, even if they existed, it
would be practically impossible to create scenarios involving
a very large number of nodes. Therefore, we cannot carry
out experiments to test our proposed method, and we use
simulations.

Currently, four nanonetwork simulators exist:

e Nano-Sim [22] is a plug-in for the well-known NS3
network simulator'. It does not take into account the
signal propagation delay, neither the actual payload when
computing collisions, whose impacts are significant in
nanonetworks.

Uhttps://www.nsnam.org



o Vouivre [23] is a discrete event simulation library which
simulates individual packets and propagation delay. How-
ever, it uses a statistical model for packet error rate and
does not take actual payload into account.

o COMSOL Multiphysics® is a simulator for various physics
and engineering applications, and as such it allows to
simulate THz nanocommunication too. This very precise
simulator would take too much time to simulate the large
networks used in our tests.

e BitSimulator [24], a small and very focused simulator
developed by us. It uses a discrete event model and has
the following main features useful for our study:

— Propagation delay: packet arrival time on a node
depends on the distance between the sender and the
receiver.

— Collisions: the TS-OOK model (see the background
section) and packet payload are used to compute
collisions.

— TIts simple design allows it to scale up to hundred of
thousands of simulated nodes on a usual laptop.

— The simulations use reproducible random numbers,
giving reproducible simulations.

For our work, BitSimulator is the most appropriate, and as
such we used it in this article.

B. Scenarios and parameters

In all the simulations we use the following scenarios. We
simulate a 2D environment as a square of side s = 6 mm. We
use an all-or-nothing propagation model with a communication
range of ¢r = 0.5 mm. Packets are 1000 bits long, 8 = 1000,
and T, = 100fs [4]. Nodes are always placed randomly. A
node placed in the center of the network broadcasts a packet
to all the nodes in the network.

Given the environment size and the communication range,
the furthest possible receiver is in the corner, at V2 xs /2=
4.2mm away from the source, i.e. 4.2/cr = 8.4 times the
communication range, leading to 8 hops (or more, depending
on the connectivity of the network) for the packet to reach
the furthest possible node. The average density of nodes in
a communication range (number of neighbors) can be simply
computed as (n; is the total number of nodes):

2

density = ny o = 0.022 x ny, (10)

52

In the following we compare three methods: our method
with DEDeN, probabilistic flooding with DEDeN, and pure
flooding. Instead of DEDeN, one can choose to use another
estimator, as presented in the background section.

We define as the probabilistic flooding with DEDeN the
method presented in [14], i.e. the flooding with the following
forwarding probability:

(1)

Zhttps://www.comsol.com

where r < n. is the intended average number of forwarders
(i.e. the redundancy), and n; the estimation of the number of
neighbors for each node, as provided by DEDeN.

The pure flooding and the probabilistic flooding do not
work well in nanonetworks for the following reason. When
a node broadcasts a packet, because of the huge speed of
the light ¢, all its neighbors receive it almost at the same
time, more precisely in an interval of time k7, with k small
(depending on the communication range), and 7}, = 100fs as
the duration of a pulse, i.e. of a bit, cf. the background section.
More specifically, ¥ = c¢r/(cI},), which in our scenario
gives k = 0.5 x 1073/(3 x 108 x 100 x 1071%) = 16.5.
In pure/probabilistic flooding and dense network, all these
forwarding neighbors forward this packet as soon as they
receive it, i.e. in a very small window, of k bits, which gener-
ates numerous collisions at receivers. To avoid this disastrous
effect, we have added a backoff window of 10000fs to pure
and probabilistic flooding.

The metrics used in the comparison are the reachability and
the cost. We define the reachability as the ratio of nodes having
received the packet divided by the number of nodes in the
network. A reachability of 1 means that all the nodes in the
network have received the packet. As such, a disjoint network
never achieves a reachability of 1. We define the cost as the
total number of packets sent in the network divided by the
number of nodes in the network. Our goal is to have a high
reachability with a small cost.

In the following, a redundancy of n means that the node
will forward the packet if and only if it has received at most
n copies. Otherwise said, when a node receives n + 1 copies
during the backoff, it discards the packet.

In the following, each point represents the average of
15 simulations, which differ only by the seed of the random
generator used for the probability in probabilistic flooding,
and for the backoff value inside the given window for backoff
flooding, which results in different forwarders. We consider
this to be sufficient, given the high number of nodes, and the
size of the network compared to the communication range.

C. Results

We simulate 10000 nodes, which, according to (10), gives
an average density (number of neighbors) of 218, which in
turn means that all the nodes are certainly reachable by the
sender. The results are shown in Fig. 8.

Since the backoff flooding insures that at least redundancy
packets are sent in a given communication range, a redun-
dancy of 1 should be sufficient to obtain a reachability of 1;
simulations confirm it: for a redundancy varying from 1 to 20,
reachability is always 1, i.e. all the nodes receive the packet.

For probabilistic flooding, the reachability depends heavily
on the redundancy, and for low redundancies the reachability
is quite low. Also, for low redundancies, a large variability
can be noticed: the reachability can span as much as from
close to 0 to close to 1 (for redundancy of 5 in Fig. 8). The
reachability close to O in one of the simulations corresponds
to the fact that the initial packet, for probabilistic reasons, has
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Fig. 8. Reachability and cost of probabilistic flooding and backoff flooding in
dense networks. Pure flooding, not shown in the figure, has both reachability
and cost equal to 1.

not been forwarded by any node, hence only the nodes in the
initial communication range received it. In general, the die
out problem (a reachability smaller than 1) appears when, for
probabilistic reasons, all the nodes of a part of the network
happen to not forward the packet, leading to the whole further
region being dead out. This phenomenon does not appear in
backoff flooding, because it is not probabilistic.

Another advantage of backoff flooding is that, given that
a redundancy of 1 is sufficient, it is automatic, i.e. there is
no parameter to tune for reachability, whereas in probabilistic
flooding one has to discover which redundancy should be used
to achieve a redundancy of 1.

As for the cost, for probabilistic flooding, the number of
packets is proportional to the forwarding probability, which
in turn is, according to (11), proportional to the redundancy.
For backoff flooding too, the redundancy gives the number
of packets in a communication range, hence the latter is
proportional to the former. The simulations confirm these
results: Fig. 8 shows that the number of packets increases
linearly with the redundancy for both probabilistic and backoff
flooding methods. Moreover, for a reachability of 1, the cost
of backoff (obtained for a redundancy of 1) is smaller than
the cost of probabilistic flooding (required redundancy of 9).

As for the pure flooding, it always achieves the same result:
a reachability and a cost of 1. The small backoff we added
to it reduces the number of collisions and allows all nodes
to receive at least one copy of the packet, i.e. a reachability
of 1. The reason for the constant cost of 1 is that all the nodes
receiving a packet for the first time forward it. Compared to
it, backoff flooding also gives a reachability of 1, but using
much fewer packets.

We also simulated a network of 100000 nodes, hence a
density 10 times higher, i.e. 2180 neighbors. The conclusions
on reachability and cost were similar to the dense network,
hence we do not show them. Additionally, we noticed that the
number of packets sent is similar in 10000 and 100 000 nodes
scenarios, even if the number of nodes differs by one order
of magnitude. Hence, the higher the density, the higher the
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Fig. 9. Reachability in low density networks.
efficiency.

Both probabilistic flooding and backoff flooding drastically
reduce the number of copies generated compared to pure
flooding. However, backoff flooding has two advantages over
probabilistic flooding, and two drawbacks. First, it is much less
prone to incomplete coverage because the forwarding decision
is not probabilistic, and if a given redundancy is needed then
it insures it. Secondly, using k£ parameter, it can be tuned to
have a low redundancy variation. On the other hand, it incurs
an additional delay that increases with the reduction of the
number of forwarders and the spread of their distribution.
As the decision to forward or delete a packet needs to be
postponed, it also requires to keep one copy of the packet
in memory during that time. This additional time is however
small, cf. section IV-C.

To conclude, in dense and very dense networks, backoff
flooding is better than probabilistic and (obviously) pure
flooding. To achieve a reachability of 1 in dense networks,
pure flooding has a cost of 1, probabilistic flooding a cost
of 0.068 after choosing carefully the redundancy parameter,
and backoff flooding a cost of 0.020 (71% fewer messages than
probabilistic flooding), as shown in Fig. 8. In denser networks,
backoff flooding has a cost of 0.0021 and probabilistic flooding
a bigger cost, of 0.0063.

Even if our method does not target low density networks,
since e.g. pure flooding should have satisfactory results, we
are interested to know the reachability given by our method
in this case.

We simulate a total number of nodes varying from 150 to
500, which, according to (10), represents an average density
(number of neighbors) between 3 and 11.

We notice (Fig. 9) that the reachability is still 1 or close
to 1 for densities larger than 9.26 with a redundancy of 1. For
densities from 9.26 to 5.13, a rendundancy of 2 is necessary
to obtain a reachability close to 1. For even smaller densities,
less than 5.13, a redundancy of 1 gives bad results and a
redundancy of 10 gives subunit results; for a density of 3.76
for instance, the reachabilities are 0.15 and 0.6, respectively.

The reason for the subunit reachability is that for low



densities the network could be disjoint. For a density of
3.76, with a redundancy of 10, which is bigger than the
number of neighbors (3.76), the reachability is still 0.6, which
corresponds to the maximum number of nodes which can be
reached by the sender, given the “sparsity” of the network.

To conclude, in low density networks, the maximum reach-
ability could be obtained only by increasing the redundancy,
and for very low densities not all the nodes receive the packet
because the network is disjoint.

VI. CONCLUSION

This article presented backoff flooding, an efficient broad-
casting scheme for dense networks. It combines a backoff
window, a counter of packets and an estimator of the num-
ber of neighbors. We explained why this method should be
efficient in dense networks. We run simulations to confirm
this statement. Also, compared to probabilistic flooding, the
proposed method is automatic, i.e. there is no parameter
for the application to tune, and needs much fewer messages
exchanged in the network. For instance, in a network with a
density of 218 neighbors, it uses 71% fewer messages. While
being efficient, it avoids the die out problem commonly found
in broadcasting schemes.

Future works include further improving backoff flooding by
incorporating techniques to enhance forwarders selection, and
measuring how the improvements given by backoff flooding
help to reduce congestion in networks.
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