A first study on video transmission over a nanowireless network

Eugen Dedu
Institut FEMTO-ST
UMR CNRS 6174
Université de Franche-Comté
Centre National de Recherche Scientifique (CNRS)
25200 Montbéliard, FRANCE
eugen.dedu@femto-st.fr

Julien Bourgeois
Institut FEMTO-ST
UMR CNRS 6174
Université de Franche-Comté
Centre National de Recherche Scientifique (CNRS)
25200 Montbéliard, FRANCE
julien.bourgeois@femto-st.fr

Muhammad Agus Zainuddin
Institut FEMTO-ST
UMR CNRS 6174
Université de Franche-Comté
Centre National de Recherche Scientifique (CNRS)
25200 Montbéliard, FRANCE
muhammad@femto-st.fr

ABSTRACT

Video streaming is a growing application on the Internet, and its growing pace is not slowing down. There have been a tremendous amount of work on video streaming over the Internet but nobody has ever studied in detail video streaming over a nano-wireless network. We think that video streaming could be a potential application for nano-wireless networks and we know that video streaming is a challenging application for networks. First, video streaming is a real-time transmission meaning that it is sensitive to delay and jitter. Second, it is often better not to retransmit losses to avoid video freezing. That is why nano-wireless layers will probably have to be tuned for video streaming.

This article studies, through simulation, different scenarios of video transmission over a nanowireless network. We conclude that research needs better tools and models for such studies.

General Terms
Simulation

Keywords
video streaming, nano-wireless communications, simulation

1. INTRODUCTION

According to the last Sandvine report [1], in North America, the video streaming in fixed internet connections uses 50% of the downstream bandwidth, far before the next usage which is HTTP with 10% of the downstream bandwidth. This trend on video streaming predominance can also be seen for the mobile access. The first usage of downstream bandwidth on mobiles is for YouTube with 18% but if we sum up all video usages (YouTube, MPEG, Netflix) we reach 31%. This trend is also true for Europe, South America and Asia but to lesser extent. This shows that video streaming has become the first usage within the Internet.

The Internet of Things (IoT) [5] federates the things that need to communicate and their requirements are different from traditional computers and humans. Some things will still need a high bandwidth and a low latency but most of them only need low power communications and, low bandwidth and high latency are not an issue. IoT is therefore growing both inside and aside from the Internet creating a new way to communicate.

Advances in micro-electro-mechanical-systems (MEMS) are enabling the design and fabrication of distributed intelligent MEMS (DiMEMS) [10]. A node in a DiMEMS system is basically composed of actuators, sensors, a processing unit and communication capabilities, which makes it a micro-robot integrated in a much larger ensemble, the IoT.

The appearance of nano-electromagnetic communications, referred to as nano-wireless in the rest of this article, changed the perspectives for communicating between small things, making possible communications between miniaturized elements, with the internet of micro-things [9], or even smaller elements, with the internet of nano-things [18]. Nano-wireless communications have been first proposed in [3], later detailed in [4] using graphene nano-antennas and been used in some micro-robot applications [8]. As these antennas are very small they are able to radiate in the terahertz band. Video streaming is therefore possible between very small things but remains complex due to the nature of Terahertz band. Propositions have been made for defining an energy-efficient physical layer [25] but transmitting video on top of these different layers is still an open issue (but has been studied in ultra-wide band networks in [11]). In fact, we think that a cross-layer approach is needed in the design of the communication layers of nano-wireless communica-
This article is at the conjunction of these four research fields: micro-robots, IoT, nano-wireless communications and video streaming, and presents a preliminary study on the possibility to stream video between micro-robots viewed as IoT elements and using nano-wireless communications. The objective is to learn some lessons on the efficiency of the current nano-wireless physical layer in order to enhance it afterwards. We use two NS3 plugins: Nano-Sim, to simulate the nano-wireless physical layer, and Quality-of-Experience (QoE) Monitor, allowing to stream real video sequences inside NS3 and to evaluate the result in terms of video quality.

2. CONTEXT

2.1 Nano-wireless communications

The first idea of nano-wireless communications was presented in [3]. This article defines the different kinds of nanonetworks media (nanomechanical, acoustic, electromagnetic and chemical or molecular) and defines the nanomachines in a similar way to Berlin in [6] but extended to a bio-hybrid approach. In this article, the molecular communication is preferred to as the electromagnetic one. In following articles, Jornet, Akyildiz and al. present the concept of CNT-based nano-antennas in [17] together with a first attempt to define its characteristics [2]. In [14], a model of path loss is proposed using High resolution TRANsmission molecular absorption database (HITRAN). The noise, in the terahertz band, is mainly introduced by the molecular absorption database. The noise, in the terahertz band, is mainly introduced by the molecular absorption database (HITRAN). The noise, in the terahertz band, is mainly introduced by the molecular absorption database (HITRAN). The noise, in the terahertz band, is mainly introduced by the molecular absorption database (HITRAN). The noise, in the terahertz band, is mainly introduced by the molecular absorption database (HITRAN). The noise, in the terahertz band, is mainly introduced by the molecular absorption database (HITRAN). The noise, in the terahertz band, is mainly introduced by the molecular absorption database (HITRAN). The noise, in the terahertz band, is mainly introduced by the molecular absorption database (HITRAN). The noise, in the terahertz band, is mainly introduced by the molecular absorption database (HITRAN). The noise, in the terahertz band, is mainly introduced by the molecular absorption database (HITRAN). The noise, in the terahertz band, is mainly introduced by the molecular absorption database (HITRAN). The noise, in the terahertz band, is mainly introduced by the molecular absorption database (HITRAN). The noise, in the terahertz band, is mainly introduced by the molecular absorption database (HITRAN).

2.2 Nano-Sim

Many network simulators allow using wireless networks, but the two most used in the research community are NS3 [13] and OMNeT++ [24]. Both of them offer modularity and support for mobility as well as wireless transmission. NS3 is a open source network simulation that is mainly used for education and research in computer communication networks. Simulations are programmed only in C++ while the previous version, NS2, used OTCL and C++ which can lead to larger abstraction that are harder to validate. NS3 have various capabilities such as usage of real IP addresses, multiple interfaces per node, it supports BSD-like sockets, and packets can contain real information. NS3 is supported by an active community that works on many topics (groups), and researchers can validate their contribution by comparing the existing ones. Furthermore, only NS3 has a plugin for nano-wireless simulation. Preliminary works have, indeed, been done in Nano-Sim [21] which is a plugin of NS3.

Nano-Sim allows to evaluate Wireless NanoSensor Networks (WNSN) performances. It has been used to test health care applications and it comprises three types of WNSN devices:

- Nanonode: It is the smallest device and it can be seen as a sensor collecting information such as chemical reaction or multimedia content (sound, image and video). This device has limited capabilities in computational, storage and communication range.
- Nanorouter: This device has larger capabilities than a nanonode, it can receive and forward information to the nanointerface or to other nanorouter.
- Nanointerface: This device can be viewed as the sink which process information from sensors. This device can also be used as a gateway to another network e.g: WiFi, LTE, etc.

The network architecture consists of four layers:

- Application Layer (Message Processing Unit class). This layer has the functionality to generate packets using Constant Bit Rate (CBR) and to receive packets from the lower layer.
- Network Layer. This layer has the functionality of passing (receiving and forwarding) packets between nanosensors and nanorouters to nanointerfaces. A header...
which allows to read a video, transmit it using NS3 and Quality of Experience (QoE) Monitor is an NS3 module.

2.4 Quality-of-Experience Monitor

In both protocols, to prevent duplicate packets the device keeps a list of 20 received packet Id. The two modules did not work out of the box. We used an NS3 version (3.16) which worked with QoE monitor. A first modification was to make QoE monitor work with recent NS3 version (3.16) which worked with QoE monitor. A first limitation: QoE monitor receiver discards a fragment if the previous fragment has not been received, otherwise said packet reordering leads to packet loss. As such, all packets arriving in disorder are replaced by null data in the two modules unsolved for the moment, for example:

• bug: Nano-Sim does reordering of packets whereas it should not. For example, in a simple network with two nodes (source and destination), sometimes a packet B arrives before a packet A which was sent before B.

• limitation: QoE monitor receiver discards a fragment if the previous fragment has not been received, otherwise said packet reordering leads to packet loss. As such, all packets arriving in disorder are replaced by null data in the two modules unsolved for the moment, for example:

3. SIMULATION SETUP

Given that experiments are impossible to be done in practice and that there is no simulator of video data transmission on nanonetworks, we decided to use the widely used NS3 simulator and two external modules: Nano-Sim and QoE monitor. Nano-Sim\(^1\) was written at Technical University of Bari in Italy and simulates very roughly a nanonetwork. QoE monitor\(^2\) was written at University of Modena and Reggio Emilia in Italy and features an H264-encoded video reader, a valid video writer where lost bytes are replaced with null bytes, and PSNR and SSIM metric computation.

The two modules did not work out of the box. We used an NS3 version (3.16) which worked with QoE monitor. A first limitation was to make QoE monitor work with recent version of libav (a fork of ffmpeg), which is known to change often its API. A second and most difficult challenge was to make Nano-Sim and QoE monitor work together. In both modules, packet sending is done deep inside the module. Our solution was to hack QoE code to replace QoE packet sending with calls to Nano-Sim packet sending. The source code solving these issues is freely available on Internet\(^3\).

Unfortunately, we met limitations, simplifications and bugs in the two modules unsolved for the moment, for example:

• bug: Nano-Sim does reordering of packets whereas it should not. For example, in a simple network with two nodes (source and destination), sometimes a packet B arrives before a packet A which was sent before B.

• limitation: QoE monitor receiver discards a fragment if the previous fragment has not been received, otherwise said packet reordering leads to packet loss. As such, all packets arriving in disorder are replaced by null data in

---

\(^1\)Downloaded from http://telematics.poliba.it/index.php/en/nano-sim

\(^2\)Downloaded from http://sourceforge.net/projects/ns3qemonitor

\(^3\)http://eugen.dedu.free.fr
the received data. Real video clients reorder received packets instead. The end result is that the quality of received video in QoE monitor is less than in reality.

- simplification: Nano-Sim has a very simplistic propagation model (all or nothing), where packets are received if they are inside a circle of some radius from the sender, or lost otherwise.

For all these reasons, we consider our work as a rough but first study on video transmission over nanonetworks.

We used two network topologies for the tests, shown in figure 1. The first has two nodes, and is used to check the simulator with the two modules (QoE monitor and NanoSim). The second has one source, one destination and 16 relays, and is used to discover how communication is done in a multi-hop network. All the nodes are motionless. The distance between two consecutive nodes is 1 cm. The communication range for all nodes is set to 1.2 cm, and was chosen so that the network exhibit a connectivity of 4 neighbours, and that there are several hops (more precisely 5 hops) between the sender and the destination, and contention in the network during the communication. The molecular communication is used, with flooding routing protocol and TS-OOK modulation. The pulse duration is 100 fs and the pulse interval is 10000 fs, i.e. 100 times greater than pulse duration. The transmitting power is 1000 fW.

There is one flow in the network. The video file used as input is the classical “news” sequence in CIF resolution. The file starts to be sent at second 2. The simulation ends when the file streaming finished. We executed ten times each of the two topologies, and present the results in the next section.

4. SIMULATION RESULTS

The PSNR metric between the received video and the sent video for 2-nodes network is presented in figure 2. It can be seen that all the executions give similar results. Also, the PSNR has a relatively low value (20 to 35 dB) and is quite regular, knowing that 20 to 25 dB are considered to be acceptable values for wireless transmission quality loss. No packet is lost on the network; instead the reordering done by Nano-Sim, as presented in previous section, makes QoE monitor drop packets at receiver. The abrupt changes in PSNR plot, appearing at frames 45, 80 and 130, correspond to abrupt scene changes in video file. The PSNR for 18-nodes network, given in figure 3, is similar to the one for 2-nodes and exhibits the same properties.
The SSIM metric for 18-nodes network is presented in figure 4. All the executions give similar values. SSIM curve varies much more than PSNR curve. As for PSNR, SSIM curve varies more at abrupt scene changes, but it is less visible, except for frame 130. The SSIM curve for 2-nodes network is similar to 18-nodes network.

For video transmission, another important parameter is how the packet delay change, because it fixes the receiver buffer size. The jitter (the difference between packet delays) is presented in figure 5. It shows that the jitter varies generally between 30 ns and 70 ns. These values are 3 orders of magnitude lower than what is currently found on Internet, which are of order of tens of ms. As a consequence, the buffers at receiver side could potentially be very smaller than the ones on Internet. However, more importantly, the figure shows that the jitter is identical for all executions, either 2-nodes or 18-nodes. This is an unrealistic result, since in reality the delay and the jitter do depend on the number of hops between sender and receiver (1 hop in 2-nodes, and 5 hops in 18-nodes network). This result shows the limits of Nano-Sim and the losses at receiver side in case of unordered packets are not realistic.

The research in this field needs better models and tools. We have started to create a simulator better suited to nanowireless networks and more appropriate to resource-hungry applications like video transmission. Such a tool should take into account channel contention, transmission delays, a more realistic packet loss pattern, allow to read and write video files even at high bitrates, and, last but not least, give reliable results.

6. REFERENCES


