EcnLD, ECN Loss Differentiation to optimize the performance of transport protocols on wireless networks

Wassim Ramadan, Eugen Dedu and Julien Bouregois

Laboratoire d'Informatique de l'Université de Franche-Comté

Workshop on Mobile Computing and Networking Technologies

14 October 2009
Outline

1. Introduction
   - Objective
   - Why DCCP

2. Loss differentiation

3. Performance measurements

4. Conclusion
Objective

- Improving performance of transport protocols over wireless networks
- Design a new transport protocol suitable for video streaming in wireless networks
DCCP

- New protocol more adapted for multimedia transmissions:
  - Unreliable
  - Choice between two congestion controls
    - TFRC
    - TCP-like
  - Possibility to add its own congestion control
  - Mechanisms indicating to the sender with reliability which packets are received by the receiver
  - ECN utilization
DCCP congestion control

TCP-like

- Similar to the congestion control of TCP
- But:
  - Packet oriented
  - Selective Acknowledgement (SACK)
  - Well suited to multimedia data transport in environments where there are quick changes in network conditions
Outline

1. Introduction
2. Loss differentiation
   - Motivation
   - ECN
   - Methods based on ECN
3. Performance measurements
4. Conclusion
Cause of losses

- Congestion
- Interference, mobility, etc (in Wi-Fi)

Why we need to make a distinction between the two causes?

- Avoid bad reaction when there is a loss
- Not to reduce rate to avoid congestion while it is an interference
  - Therefore: maximize throughput transmitted

Classification methods: Three Categories

- IAT, ROTT or ECN (Our Approach EcnLD)
Cause of losses

- Congestion
- Interference, mobility, etc (in Wi-Fi)

Why we need to make a distinction between the two causes?

- Avoid bad reaction when there is a loss
- Not to reduce rate to avoid congestion while it is an interference
  - Therefore: maximize throughput transmitted

Classification methods: Three Categories

- IAT, ROTT or ECN (Our Approach EcnLD)
Cause of losses

- Congestion
- Interference, mobility, etc (in Wi-Fi)

Why we need to make a distinction between the two causes?

- Avoid bad reaction when there is a loss
- Not to reduce rate to avoid congestion while it is an interference
  - Therefore: maximize throughput transmitted

Classification methods: Three Categories

- IAT, ROTT or ECN (Our Approach EcnLD).
ECN (Explicit Congestion Notification)

**ECN principle**

- Notify the sender without losing packets
- A packet ECN compatible is marked on a router before its queue becomes full, otherwise the packet is rejected
EcnLD vs TCP-Eaglet

TCP-Eaglet

- Algorithm: when there are one or more losses,
  - If (Slow Start): halve transmission rate
  - Else (Congestion Avoidance) And ECN:
    - It is a congestion $\Rightarrow$ halve transmission rate

- Problem: No differentiation in the slow start phase

EcnLD, Our approach

- Use RTT in addition to ECN
- Algorithm: when there are one or more losses,
  - If $\text{ECN OR } (n > 0 \text{ AND } RTT_{\text{cur}} > RTT_{\text{ave}} + RTT_{\text{var}})$
    Where: $n$ is the number of losses returned in the acknowledgment
    - It is a congestion $\Rightarrow$ halve transmission rate

Wassim Ramadan, Eugen Dedu and Julien Bouregois
### EcnLD vs TCP-Eaglet

#### TCP-Eaglet

- Algorithm: when there are one or more losses,
  - If (Slow Start): halve transmission rate
  - Else (Congestion Avoidance) And ECN:
    - It is a congestion $\Rightarrow$ halve transmission rate
  - Problem: No differentiation in the slow start phase

#### EcnLD, Our approach

- Use RTT in addition to ECN
- Algorithm: when there are one or more losses,
  - If $\text{ECN OR (} n > 0 \text{ AND } RTT_{\text{cur}} > RTT_{\text{ave}} + RTT_{\text{var}} \text{)}$
    Where: $n$ is the number of losses returned in the acknowledgment
    - It is a congestion $\Rightarrow$ halve transmission rate
Outline

1. Introduction
2. Loss differentiation
3. Performance measurements
   - Simulation topology
   - Simulation results
4. Conclusion
The simulation time is 50 seconds. The sender is s1 and the receiver is m1.
Description of simulation

- **Objective**: compare the performance of EcnLD, TCP-like, and TCP-Eaglet
- **Two scenarios with an wireless error rate varying from 0% to 20%**
  - Without competition
  - In competition with TCP (between s2 and d1. From 1 to 20s And from 25 to 45s)
- **One or two MAC retransmissions**
EcnLD vs TCPlike

First scenario: without competition

**Results**

Improved performance even with increased wireless error rate

EcnLD, ECN Loss Differentiation Method
EcnLD vs TCPlike
First scenario: without competition

Results
Improved performance even with increased wireless error rate
EcnLD vs TCPlike
Second scenario: in competition with TCP

One retransmission

Two retransmissions

Results
Improving performance even in the presence of other traffic in the network
EcnLD vs TCPlike

Second scenario: in competition with TCP

Results

Improving performance even in the presence of other traffic in the network
EcnLD vs TCP-Eaglet

First scenario: in competition on a wireless network of 11Mb/s

Results

Performances are nearly equal
EcnLD vs TCP-Eaglet

First scenario: in competition on a wireless network of 11Mb/s

Results

Performances are nearly equal
EcnLD vs TCP-Eaglet
Second scenario: in competition on a wireless network de 54Mb/s

Results
EcnLD has a high ratio of received/sent packets
TCP-Eaglet has a higher throughput but losses a lot of packets on the network
EcnLD vs TCP-Eaglet
Second scenario: in competition on a wireless network de 54Mb/s

### Results

EcnLD has a high ratio of received/sent packets  
TCP-Eaglet has a higher throughput but loses a lot of packets on the network
### Results

<table>
<thead>
<tr>
<th></th>
<th>One retr. 11Mb/s</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>4%</td>
<td>8%</td>
<td>12%</td>
<td>16%</td>
<td>20%</td>
<td>Avg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EcnLD</td>
<td>100%</td>
<td>79%</td>
<td>68%</td>
<td>68%</td>
<td>67%</td>
<td>69%</td>
<td>72%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaglet</td>
<td>100%</td>
<td>84%</td>
<td>86%</td>
<td>90%</td>
<td>89%</td>
<td>88%</td>
<td>86%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Two retr.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>4%</td>
<td>8%</td>
<td>12%</td>
<td>16%</td>
<td>20%</td>
<td>Avg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EcnLD</td>
<td>100%</td>
<td>76%</td>
<td>63%</td>
<td>51%</td>
<td>72%</td>
<td>81%</td>
<td>73%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaglet</td>
<td>100%</td>
<td>50%</td>
<td>50%</td>
<td>79%</td>
<td>51%</td>
<td>54%</td>
<td>64%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>One retr. 54Mb/s</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>4%</td>
<td>8%</td>
<td>12%</td>
<td>16%</td>
<td>20%</td>
<td>Avg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EcnLD</td>
<td>40%</td>
<td>53%</td>
<td>64%</td>
<td>75%</td>
<td>73%</td>
<td>72%</td>
<td>64%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaglet</td>
<td>4%</td>
<td>4%</td>
<td>10%</td>
<td>26%</td>
<td>33%</td>
<td>41%</td>
<td>18%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Two retr.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>4%</td>
<td>8%</td>
<td>12%</td>
<td>16%</td>
<td>20%</td>
<td>Avg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EcnLD</td>
<td>41%</td>
<td>34%</td>
<td>25%</td>
<td>66%</td>
<td>48%</td>
<td>53%</td>
<td>43%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaglet</td>
<td>3%</td>
<td>2%</td>
<td>2%</td>
<td>9%</td>
<td>10%</td>
<td>16%</td>
<td>6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**EcnLD** has a higher loss classification rate in most cases.

**TCP-Eaglet** bad classification results in a higher throughput but less network friendly.
### Results

**EcnLD** has a higher loss classification rate in most cases.

**TCP-Eaglet** bad classification results in a higher throughput but less network friendly.
Conclusion and perspectives

Conclusion

- EcnLD has a very high rate of received packets, which designed to improve performance on wireless networks
- EcnLD carries a very high packets reception rate, which makes it suitable to streaming multimedia

Perspectives

- Improving our contribution in wireless networks to design a new multi-radio protocol
Conclusion

- EcnLD has a very high rate of received packets, which is designed to improve performance on wireless networks.
- EcnLD carries a very high packets reception rate, which makes it suitable for streaming multimedia.

Perspectives

- Improving our contribution in wireless networks to design a new multi-radio protocol.
Thank you for your attention

Questions ?