

IEEE International Conference on Parallel and Distributed Systems (ICPADS)

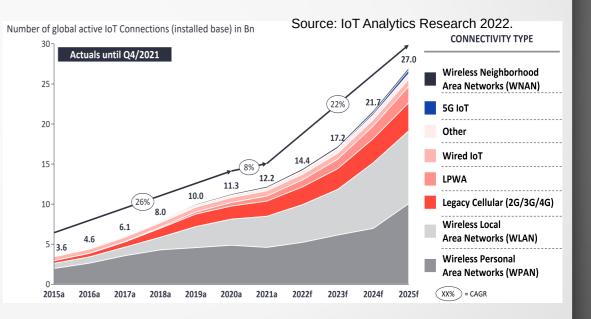
10-12 January 2023, Nanjing

Influence of beta and source packet rate on electromagnetic nanocommunications

Farah Hoteit, Eugen Dedu, Winston K.G. Seah, Dominique Dhoutaut.

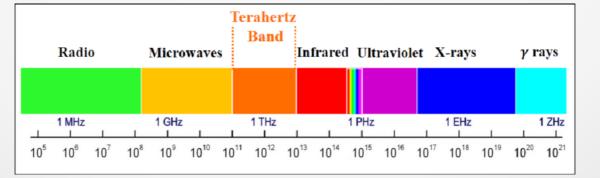
Introduction

Internet of Things (IoT):


Billions of devices (computers, sensors, etc.)

 \rightarrow enable **smart** applications.

 Internet of Nano Things (IoNT):


Nanodevices

 \rightarrow enabled by nanotechnology.

Electromagnetic Nanonetworks

- Introduced by Jornet in **2010**.
- Networks of nanodevices.
- **THz** band (0.1-10 THz).
- High data rates (up to few terabits per second).
- Resource-constrained nanodevices.
- Large network size (e.g., 10³ to 10⁹ nodes).
- High node **density** (e.g., 10² or 10³ of neighbors).

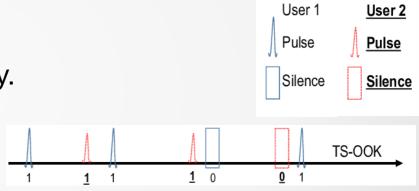
The Terahertz band. Source: Towards nanoscale interconnect for system-on-chip.

Requirements	Software-defined metamaterials		Wireless robotic materials	In-body communication	On-chip communication
	Gen. 1	Gen. 2			
Network size	10^3 to 10^6	10^{9}	10 to 10 ⁶	10^3 to 10^9	Up to 10^3
Node density	100 to 10000 nodes per cm^2		1 to 100 nodes per cm^2	$>10^3$ nodes per cm ³	10-100 per mm ²
	Applications' requirements of nanonetworks. Source: Survey on Terahertz Nanocommunication and Networking: A Top-Down Perspective.				

β and congestion

Relationship between node symbol rate β, source packet rate and congestion, collisions

β: Data modulation schemes


- Nanonetworks: No Carrier modulations.
- Time Spread On-Off Keying (**TS-OOK**):
 - Binary:
 - **Bit 0**: silence without energy.
 - Bit 1: pulse for T_P= 100 fs with energy.
 - → Reduce collisions

(bit 0 is replaced by a bit 1).

- Inter-bit duration $T_s > T_p$:

→ Multiple packets in parallel ≤ MCR.

- Symbol rate $\beta = T_s/T_p = 1000$:
 - Energy harvesting applications.
 - **Synchronization**: bits decoded at precise times at receiver.

Comparison between modulations. Source: Survey on terahertz nanocommunication and networking: A top-down perspective.

β: Data modulation schemes

Rate Division TSOOK (RD TS-OOK) or PHLAME:

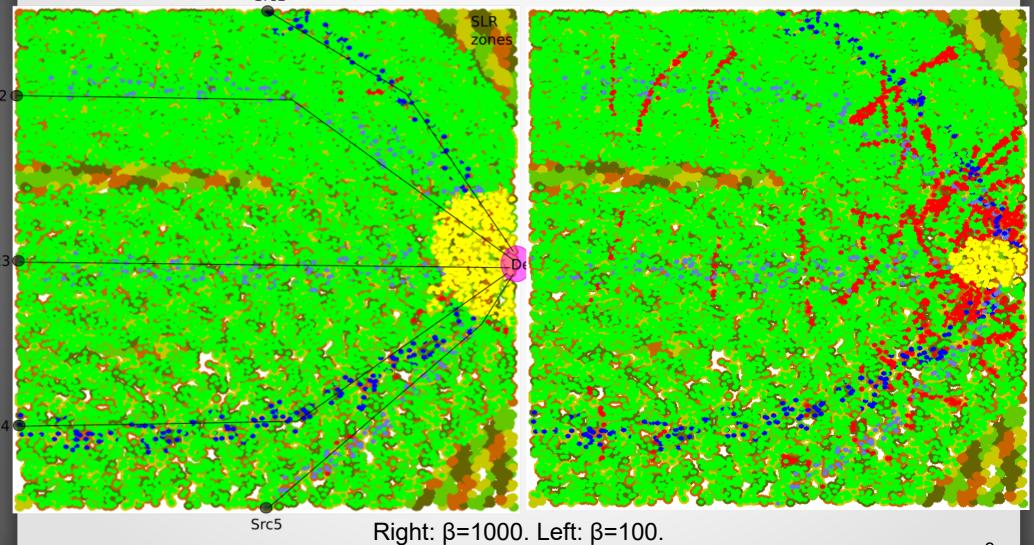
- **Problem with TS-OOK**: multiple users transmit with same β + collide in one bit \rightarrow collide in all bits.
- **Proposition**: **Co-prime** β to transmitters.

Comparison between modulations. Source: Survey on terahertz nanocommunication and networking: A top-down perspective.

Congestion: in nanonetworks

Causes:

- Wide THz shared channel X
- High network traffic (high number of forwarders)
- Limited hardware of nodes


(limited to MCR packets in parallel at receiver, above that packets are ignored) ✓

β and congestion

- Simulator: BitSimulator
- 5 source-destination pairs/ 5 CBR flows of 100 packets each
- Nanonetwork
 - Heterogeneous:
 - 10000 nodes upper band
 - 6000 nodes middle band
 - 4000 nodes bottom band.

Parameter	Value			
Size of simulated area	6 mm * 6 mm			
Number of nodes	20 0 00			
Communication range	900 µm			
Data packet size	1000 bit			
Number of flows	5			
Number of packets per flow	100			
Routing protocol	SLR backoff			
Communication range for SLR addressing phase	250 μm			
Backoff redundancy	20			
MCR	3			
Pulse duration T_p	100 fs			
MaxBitError	0			
Scenario Parameters				

Src1

Right: β =1000. Left: β =100. Source inter-packet interval=100 µs.

Effect of β and source packet rate on **ignore and collision**:

- Lower $\beta \rightarrow$ Lower Ts
 - → Faster symbol processing
 - → Faster packet quitting buffers
 - → Lower ignore.
 - Higher overlapping probability of symbols of multiple packets
 - → Higher collision.
- Higher source rate → Higher traffic
 - \rightarrow Higher ignore.
 - → Higher collision.

Effect of β and source packet rate on **packet delivery**:

- β /source rate pair \rightarrow high ignore \rightarrow packet loss.
- High collision is more tolerated than high ignore: altered packets on route, but others arrive successfully to destination(s).

Effect of **dynamic** β:

- Modulations:
 - **TS-OOK**: fixed β = 1000 for all nodes.
 - RD TS-OOK: dynamic co-prime β for transmitters, randomly from 1009, 1013 and 1019.

Results:

- Similar ignores and collisions, as β close.
- However, with error correction codes
 - → RD TS-OOK has fewer collisions than TS-OOK (fewer bit errors/packet).

β and congestion: Conclusion

- IoT and IoNT → Connecting devices densely → Scalability.
- Nanonetworks: undiscovered and exciting topic of research.
- If congestion is detected in nanonetwork, verify β and source rate:
 - Lower source rate (if application allows it): source sends then pauses then sends then pauses etc.
 - Lower β (if nanomachine allows it) \rightarrow less buffer overflow \rightarrow good packet delivery, even with high collisions on route.

Final Word

Thanks